现在位置: 首页 > 奇闻趣事 > 正文

AI换脸软件 deepfacelab 原版+汉化

本文作者: 发布时间:2022-02-12
【文章导读】沃唐卡(www.wotangka.com)是中国最大的线上唐卡艺术数据平台,沃唐卡坚持经营100%纯手工精品唐 […]
沃唐卡(www.wotangka.com)是中国最大的线上唐卡艺术数据平台,沃唐卡坚持经营100%纯手工精品唐卡,以尼泊尔唐卡批发、热贡唐卡定制、高端唐卡投资为主!

欢迎朋友们来了解下沃唐卡(www.wotangka.com),更多唐卡产业对接陆续上线中!

希望朋友们能对沃唐卡多一点了解!希望能有更多志同道合的朋友们加入!能每天与喜欢唐卡的人一起努力,是沃唐卡最大的幸运与快乐!

想了解沃唐卡的朋友请点击登入官网了解更多讯息沃唐卡官方网站www.wotangka.com

  1. 工作区清理:

1) Clear Workspace -删除workspace下所有内容。别手贱点他。

  1. 从src视频中提取画面 (data_src.mp4):

2) Extract images from video data_src – 从data_src.mp4视频中提取帧并将其放入自动创建的“ data_src”文件夹中,可用选项:-FPS-跳过视频的默认帧速率,输入其他帧速率的数值(例如,输入5将仅以每秒5帧的速度呈现视频,这意味着将提取较少的帧)
-JPG / PNG-选择提取帧的格式,jpg较小,通常质量足够好,因此建议使用,png较大,不能提供明显更高的质量,但是可以选择。

  1. 视频切割 (可选环节):

3) cut video (drop video on me) – 通过将视频拖放到该.bat文件中,可以快速将视频剪切为所需的长度。 如果您没有视频编辑软件并且想快速剪切视频,则很有用,可以选择以下选项:
从时间开始-视频开始
结束时间-视频结束
音轨-保留默认设置
比特率-让我们更改视频的比特率(质量)-最好保留默认设置

  1. 从目标视频中提取画面(data_dst.mp4):

3) extract images from video data_dst FULL FPS – 从data_dst.mp4视频文件中提取帧并将其放入自动创建的“ data_dst”文件夹中,可用选项:

  • JPG/PNG – 同2)
  1. 提取Data_src中的人脸:

准备源数据集的第一步是对齐人脸(把人脸都摆正了),并从位于“ data_src”文件夹中的提取帧中生成512×512面部图像。

有2个选项:
4) data_src faceset extract MANUAL – 手动提取器,用法请参见5.1。
4) data_src faceset extract – 使用S3FD算法的自动提取

S3FD和MANUAL提取器的可用选项包括:
-根据要训练的模型的面部类型选择提取的覆盖区域:
a) full face (简称F脸,额头部分有些许被裁到)
b) whole face (简称WF脸,范围更大,整个额头都取了,兼容WF和F脸模型)
c) head (不常用,给高玩做avatar用,萌新用不到)
-选择用于面部提取/对齐过程的GPU(或cpu)
-选择是否生成“ aligned_debug”文件夹

  1. Data_src 整理:

4.1) data_src view aligned result – 不常用

4.2) data_src sort – 给图片排序,方便你筛选错误图片

[0] blur 模糊程度
[1] face yaw direction 俯仰角度
[2] face pitch direction 左右角度
[3] face rect size in source image 人脸在原图中的大小
[4] histogram similarity 颜色直方图相似度
[5] histogram dissimilarity 颜色直方图不相似度
[6] brightness 亮度
[7] hue 颜色色相
[8] amount of black pixels 黑色像素的数量(常用于筛选异常人脸提取结果)
[9] original filename 源文件名字
[10] one face in image 是否是画面中唯一人脸
[11] absolute pixel difference 绝对的像素差异
[12] best faces 筛选最佳的人脸
[13] best faces faster 更快的筛选最佳的人脸

4.2) data_src util add landmarks debug images -重新生成debug文件夹

4.2) data_src util faceset enhance – 用AI算法提升素材清晰度

4.2) data_src util faceset metadata restore and 4.2) data_src util faceset metadata save – 让我们从源面集/数据集中保存和还原嵌入的对齐数据,以便在提取某些面部图像(例如将它们锐化,编辑眼镜,皮肤瑕疵,颜色校正)后可以对其进行编辑,而不会丢失对齐数据。如果不按此步骤编辑“已对齐”文件夹中的任何图像,则将不会再使用对齐数据和这些图片进行训练,因此,在保持名称相同的情况下,不允许翻转/旋转,仅是简单的编辑,例如彩色 。

4.2) data_src util faceset pack and 4.2) data_src util faceset unpack – 将“ aligned”文件夹中的所有面孔打包/解压缩到一个文件中。 主要用于准备自定义的预训练数据集或更易于共享为一个文件。

4.2.other) data_src util recover original filename – 将面部图像的名称恢复为原始顺序/文件名(排序后)。 可选,无论SRC face文件名如何,训练和合成都能正确运行。

  1. Data_dst 数据准备:

这里的步骤与源数据集几乎相同,除了少数例外,让我们从面部提取/对齐过程开始。
我们仍然有Manual和S3FD提取方法,但是还有一种结合了这两种方法和一种特殊的手动提取模式,始终会生成“ aligned_debug”文件夹。
5) data_dst faceset extract MANUAL RE-EXTRACT DELETED ALIGNED_DEBUG – 从“ aligned_debug”文件夹中删除的帧进行手动重新提取。 有关更多信息,请参见5. Data_dst清理。 以下步骤5.1中的用法。
5) data_dst faceset extract MANUAL – 纯手动模式
5) data_dst faceset extract manual fix – 半自动,机器识别不了的会切手动
5) data_dst faceset extract – 纯自动提取

选项和src的一样,不重复说了
5.1 手动人脸提取的操作说明:

启动手动提取器或重新提取器后,将打开一个窗口,您可以在其中手动找到要提取/重新提取的脸部:
-使用鼠标定位脸部
-使用鼠标滚轮更改搜索区域的大小
-确保所有或至少是大多数地标(在某些情况下,取决于角度,照明或当前障碍物,可能无法精确对齐所有地标,因此,请尝试找到一个最能覆盖所有可见位并且是“ t太不对准)落在重要的部位,例如眼睛,嘴巴,鼻子,眉毛上,并正确遵循面部形状,向上箭头指示您面部的“向上”或“顶部”在哪里
-使用键A更改精度模式,现在地标不会对检测到的面部“粘”太多,但您可能能够更正确地定位地标
-用户<和>键(或,和。)来回移动,以确认检测到鼠标左键单击并移至下一个或按Enter
-鼠标右键,用于检测无法检测到的正面或非人脸(需要应用xseg进行正确的遮罩)
-q跳过剩余的面孔并退出提取器(到达最后一张面孔并确认时也会关闭)
5.2 Data_dst 数据整理:

对齐data_dst面后,我们必须清理它们,类似于我们使用源faceset / dataset进行处理时,我们将选择一些排序方法,由于它们的工作方式与src完全相同,因此我将不作解释。
但是清理目标数据集与源数据集有所不同,因为我们要使所有存在的帧的所有面对齐(包括可以在XSeg编辑器中标记的受遮挡的面),然后训练XSeg模型以将其遮盖 -有效地使障碍物在学到的面孔上清晰可见,更多的是在下面的XSeg阶段。

这块做法和data_src类似,区别在于,最后合成时是根据dst中aligned文件数量来合成。删掉的dst人脸数据对应的画面就不会换脸

5.3: XSeg model 的训练和使用(画遮罩).

这章比较复杂,晚点翻译。萌新先不要使用遮罩。不用遮罩正常也能训练

  1. 训练:

有两种模式可以选择:

SAEHD (6GB ): 高质量模型,至少6GB显存

特点/设置

  • 最高640×640分辨率,
  • 可支持half face, mid-half face, full face, whole face and head face 5中人脸尺寸类型
  • 8种模型结构: DF, LIAE, 每种4 个变种 – regular, -U, -D and -UD
  • 可调节的批大小(batchsize)
  • 可调节的模型各层维度大小
  • Auto Backup feature 自动备份
  • Preview History预览图存档
  • Adjustable Target Iteration 目标迭代次数
  • Random Flip (yaw) 随机水平翻转
  • Uniform Yaw 按角度顺序来训练
  • Eye Priority 眼神训练优先
  • Masked Training 带遮罩训练
  • GPU Optimizer 优化器放GPU上
  • Learning Dropout 学习率自动下降
  • Random Warp 随机扭曲
  • GAN Training Power 使用GAN
  • True Face Training Power 提高人脸相似度
  • Face and Background Style Power 提高颜色相似度
  • Color Transfer modes 变对素材变色
  • Gradient Clipping 梯度裁剪
  • Pretrain Mode 使用预训练模式

Quick96 (2-4GB): 低配电脑可用

特点:

  • 96×96 分辨率
  • 只支持Full Face
  • Batch size 4
  • 默认DF-UD结构

6) train SAEHD
6) train Quick96

由于Quick96不可调节,因此您将看到命令窗口弹出并仅询问一个问题-CPU或GPU(如果您有更多问题,它将选择其中之一或同时进行训练)。
但是,SAEHD将为您提供更多调整选项。

在这两种情况下,首先都会出现一个命令行窗口,您可以在其中输入模型设置。 初次使用时,您将可以访问以下说明的所有设置,在使用已经受过训练的模型进行训练并在“模型”文件夹中显示该模型时,您还将收到提示,您可以在其中选择要训练的模型( (如果您的“模型”文件夹中存在多个模型文件)。
您还将始终提示您选择要在其上运行培训器的GPU或CPU。

启动后将看到的第二件事是预览窗口,如下所示:

这是所有功能的更详细说明,以便在开始训练新模型时将其呈现给用户:

请注意,由于这些模型的工作方式,其中一些已锁定,一旦开始训练就无法更改,例如,稍后无法更改的示例如下:

  • model resolution 模型分辨率
  • model architecture 模型结构
  • models dimensions (dims settings) 模型维度参数
  • face type 人脸类型

Autobackup every N hour ( 0..24 ?:help ) : 自动备份频率,0不备份

Target iteration : 将在达到一定的迭代次数后停止训练,例如,如果要将模型训练为仅进行100.000次迭代,则应输入值100000。将其保留为0将使其运行,直到您手动将其停止为止。 默认值为0(禁用)。

Flip faces randomly ( y/n ?:help ) : 基本不开。在您没有要交换到目标的人脸(源数据集)的所有必要角度的情况下的有用选项。 例如,如果您有一个目标/目标视频,人物直视向右,而您的源只具有直视向左的脸,则应启用此功能,但请记住,由于没有人脸对称,结果看起来可能不太像 src以及来源面部的特征(例如美容标记,疤痕,痣等)都会被镜像。 默认值为n(禁用)。

Batch_size ( ?:help ) : 批处理大小设置会影响每次迭代中相互比较的面孔数。 最低值是2,您可以提高到GPU允许的最大值,受GPU影响。 模型分辨率,尺寸越高,启用的功能越多,将需要更多的显存,因此可能需要较小的批处理大小。 建议不要使用低于4的值。批量越大,质量越好,但训练时间越长(迭代时间越长)。 对于初始阶段,可以将其设置为较低的值以加快初始训练的速度,然后将其升高。 最佳值为6-12。 如何猜测要使用的批量大小? 您可以使用试错法,也可以通过查看DFL 2.0电子表格来了解其他人在他们的GPU上可以实现什么,以帮助自己:[url = https://mrdeepfakes.com/forums/thread-dfl-2- 0-user-model-settings-spreadsheet] https://mrdeepfakes.com/forums/t … ettings-spreadsheet

Resolution ( 64-640 ?:help ) : 在这里,您可以设置模型的分辨率,请记住,在训练过程中不能更改此选项。 它会影响交换的面部的分辨率,模型的分辨率越高-学习的面部越详细,但训练的负担也将越来越长。 分辨率可以从64×64增至640×640,其增量为:
16(对于常规和-U体系结构变体)
32(用于-D和-UD体系结构变体)
更高的分辨率可能需要增加模型尺寸(尺寸)。

Face type ( h/mf/f/wf/head ?:help ) :此选项使您可以设置要训练的脸部区域,共有5个选项-半脸,半脸,全脸,全脸和头部:
a)H半脸-仅从嘴巴到眉毛训练,但在某些情况下可以割破脸部的顶部或底部(眉毛,下巴,嘴巴)。
b)MF中半脸-旨在解决此问题,方法是遮盖脸部比半脸大30%,这应该可以防止大多数不希望的割伤的发生,但仍然可以发生。
c)F全脸-覆盖除额头以外的大部分脸部区域,有时会割掉一点下巴,但是这种情况很少发生-当SRC和/或DST的额头覆盖头发时,最推荐使用此方法。
d)WF整脸-扩大该区域以覆盖几乎整个脸部,包括额头,甚至一点点头发,但是当我们要交换整个脸部(不包括头发)时,应使用此模式。该脸部类型的另一个选项是masked_training,它使您可以优先确定学习脸部的整个脸部的优先级,然后(禁用之后)让模型学习像额头一样的脸部其余部分。
e)头-用于交换整个头,不适合长发的对象,如果源面组/数据集来自单个源并且SRC和DST都短发或不变,则效果最好形状取决于角度。此脸型的最低建议分辨率为224。

whole face案例

AE architecture (df/liae/df-u/liae-u/df-d/liae-d/df-ud/liae-ud ?:help ) : 此选项使您可以在2种主要的体系结构DF和LIAE及其-U,-D和-UD变体之间进行选择。

DF和LIAE体系结构是基础体系结构,两者均提供高质量和良好的性能。
DF-U,DF-UD,LIAE-U和LIAE-UD是其他体系结构变体。[font=]

DF: 此模型体系结构提供了更直接的人脸交换,不使人脸变形,但要求源和目标/目标人脸/头部具有相似的人脸形状。
该模型在正面拍摄时效果最好,并且要求您的源数据集具有所有所需的角度,在侧面轮廓上可能会产生较差的结果。

LIAE: 当涉及源和目标/目标之间的面部/头部形状相似性时,此模型体系结构没有那么严格,但是该模型确实使面部变形,因此建议使实际面部特征(眼睛,鼻子,嘴巴,整体面部结构)相似 在源和目标/目标之间。 该模型与源头镜头的源相似性较差,但可以更好地处理侧面轮廓,并且在源源面集/数据集方面更宽容,通常可以产生更精致的人脸替换,并具有更好的颜色/照明匹配度。

-U: 此变体旨在提高训练结果面与SRC数据集的相似性/相似性。
-D: 此变体旨在提高性能,让您以两倍的分辨率训练模型,而无需额外的计算成本(VRAM使用)和类似的性能,例如以与128分辨率相同的VRAM使用和速度(迭代时间)训练256分辨率模型

-UD: 结合U和D

接下来的4个选项控制模型神经网络的尺寸,这些尺寸会影响模型的学习能力,对其进行修改可能会对所学面孔的性能和质量产生重大影响,因此应将其保留为默认值。

AutoEncoder dimensions ( 32-1024 ?:help ) : 自动编码器中间层维度大小
Encoder dimensions ( 16-256 ?:help ) : 编码器尺寸设置会影响模型学习面孔总体结构的能力。
Decoder dimensions ( 16-256 ?:help ) : 解码器尺寸设置会影响模型学习细节的能力。
Decoder mask dimensions ( 16-256 ?:help ) : 遮罩解码器的尺寸设置会影响学习到的遮罩的质量。

更改每个设置时的性能变化可能会对性能产生不同的影响,如果没有大量的培训,就无法衡量每个参数对性能和质量的影响。 每个设置为某个默认值,该默认值应提供最佳结果,并在训练速度和质量之间取得良好的折衷。

同样,在更改一个参数时,也应更改其他参数,以保持它们之间的关系相似(例如,如果将“编码器”和“解码器”的尺寸从64降低到48,则还可以将“自动编码器”的尺寸从256降低到192-240)。 随意尝试各种设置。
如果要获得最佳结果,请将其保留为默认值,或者对于高分辨率型号,将其略微提高。
Eyes priority ( y/n ?:help ) : 试图通过强制神经网络训练优先级更高的眼睛来解决眼睛训练问题。
请记住,它不能保证正确的眼睛方向,它只会影响眼睛的细节和周围区域。 示例(之前和之后):

Place models and optimizer on GPU ( y/n ?:help ) : 启用GPU优化器会将所有负载都放在GPU上,这将大大提高性能(迭代时间),但会导致更高的VRAM使用率,禁用此功能会将优化器的某些工作分担给CPU,从而减少了GPU和VRAM使用率的负载,从而使您可以实现 批处理量更大或以更高的迭代时间为代价运行更苛刻的模型。 如果您收到OOM(内存不足)错误,并且不想减小批量大小或禁用某些功能,则应禁用此功能,这样一来,一些工作将被卸载到CPU上,而某些数据将从GPU VRAM转移到系统RAM中- 您将能够以较低速度为代价运行模型而不会出现OOM错误。 默认值为y(启用)。
Use learning rate dropout ( y/n/cpu ?:help ) : LRD被用于加速面部的培训,并减少相比,如果没有启用它,使用它较少的迭代子像素抖动:

-在禁用RW之前和运行其他选项之后一次。

-禁用RW之后(也是LRD)第二次使用其他选项(均匀偏航,样式效果,真面,眼睛优先),但在启用GAN之后。

此选项会影响VRAM的使用,因此,如果遇到OOM错误,则可以在CPU上运行它,但需要花费20%的迭代时间或降低批处理大小。

有关LRD的详细说明以及在培训期间启用主要功能的顺序,请参阅FAQ问题8(此主题的第3个帖子):

“When should I enable or disable random warp, GAN, True Face, Style Power, Color Transfer and Learning Rate Dropout?”.

Enable random warp of samples ( y/n ?:help ) : 随机扭曲用于概括模型,以便它可以正确学习所有基本形状,面部特征,面部结构,表情等,但是只要启用该模型,学习精细细节就可能会遇到麻烦-因为它 建议您只要您的脸部仍在改善中(通过查看减少的损耗值和预览窗口)就启用此功能,一旦对脸部进行了全面训练并想要获得更多详细信息,则应禁用它并进行数千次迭代 应该会开始看到更多详细信息,并且禁用此功能后,您将继续进行培训。 默认值为y(启用)。

Uniform_yaw ( y/n ?:help ) : 有助于训练轮廓脸部,迫使模型根据其偏航角在所有面孔上均匀地训练,并优先考虑轮廓脸部,可能会导致正面脸部的训练速度变慢,这在预训练期间默认启用,可与随机变形类似地使用(在开始时 (训练过程)或在禁用或禁用RW后启用(当您对面部进行或多或少的训练,并且您希望轮廓脸部看起来更好且更少模糊时)。 当您的源数据集没有很多轮廓照片时很有用。 可以帮助降低损失值。 默认值为n(禁用)。

GAN power ( 0.0 .. 10.0 ?:help ) : GAN代表Generative Adversarial Network,在DFL 2.0的情况下,它是作为获得更详细/更清晰面孔的一种额外培训方式而实施的。 此选项的调整范围是0.0到10.0,只有在模型或多或少地完成训练后(禁用样本随机扭曲并启用LRD之后),才应启用该选项。 建议从低值0.1开始,该值在大多数情况下也是建议值,一旦启用,就不应禁用它,请确保对模型进行备份,以防不满意结果。
默认值为0.0(禁用)。

[font=]用GAN训练0.1的面部进行40k迭代之前/之后的示例:

‘True face’ power. ( 0.0000 .. 1.0 ?:help ) : 使用可变功率设置的真实面部训练,让您将模型鉴别器设置为更高或更低的值,这样做是为了使最终面孔看起来更像src,而对于GAN,只有在禁用了随机扭曲后,才应启用此功能 并且模型训练有素。 在启用此功能之前,请考虑进行备份。 切勿使用较高的值,典型值为0.01,但可以使用较低的值,例如0.001。 设置越高,结果面将越像源数据集中的面,这可能导致颜色匹配问题,并导致出现伪影,因此重要的是不要使用高值。 它对性能的影响很小,可能会导致OOM错误发生。 默认值为0.0(禁用)。
[font=]
Face style power ( 0.0..100.0 ?:help ) and Background style power ( 0.0..100.0 ?:help ) : 此设置控制图像的面部或背景部分的样式转移,用于将目标/目标面孔(data_dst)的样式转移到最终学习的面孔,这样可以提高质量和合并后最终结果的外观,但是 高值可能导致学习的人脸看起来更像data_dst,而不是data_src。 它将从DST传输一些颜色/照明信息到结果脸部。 建议不要使用大于10的值。从0.001-0.01之类的小值开始。 此功能对性能有很大影响,使用它会增加迭代时间,并且可能需要您减小批处理大小,禁用gpu优化器或在CPU上运行LRD。 在启用此功能之前,请考虑进行备份。 默认值为0.0(禁用)。

Color transfer for src faceset ( none/rct/lct/mkl/idt/sot ?:help ) : 此功能用于将data_src的颜色与data_dst进行匹配,以使最终结果具有与data_dst相似的肤色/色调,并且训练后的最终结果不会在人脸移动时改变颜色(如果脸部不同,可能会发生这种情况 角度是从包含不同光照条件或颜色分级不同的各种光源获取的。 有以下几种选择:

  • rct (reinhard color transfer)(我常用,滚石注): 基于: https://www.cs.tau.ac.il/~turkel/imagepa…ansfer.pdf
  • lct (linear color transfer): 使用线性变换将目标图像的颜色分布与源图像的颜色分布匹配。
  • mkl (Monge-Kantorovitch linear): 基于: http://www.mee.tcd.ie/~sigmedia/pmwiki/u…tie07b.pdf
  • idt (Iterative Distribution Transfer): 基于: http://citeseerx.ist.psu.edu/viewdoc/dow…1&type=pdf
  • sot (sliced optimal transfer): based on: https://dcoeurjo.github.io/OTColorTransfer/

Enable gradient clipping ( y/n ?:help ) : 梯度裁剪。实现此功能是为了防止在使用DFL 2.0的各种功能时可能发生的所谓的模型崩溃/损坏。 它对性能的影响很小,因此,如果您真的不想使用它,则必须启用自动备份,因为崩溃后的模型无法恢复,必须将其废弃,并且必须从头开始进行培训。 默认值为n(禁用),但是由于对性能的影响非常低,并且如果保持启用状态,可以防止模型崩溃而节省大量时间。 使用Style Powers时最容易发生模型崩溃,因此强烈建议您启用渐变裁剪或备份(也可以手动进行)。

Enable pretraining mode ( y/n ?:help ) : 启用预训练过程,该过程使用随机人脸数据集对模型进行初始训练,将其训练约200k-400k次迭代后,可以在开始使用要训练的实际data_src和data_dst进行训练时使用此类模型,因为您可以节省时间不必每次都从0开始全面训练(模型将“知道”面孔的外观,从而加快初始训练阶段)。可以随时启用pretrain选项,但建议在开始时仅对模型进行一次预训练。您还可以使用自己的自定义面集进行预训练,您要做的就是创建一个(可以是data_src或data_dst),然后使用4.2)data_src(或dst)util faceset pack .bat文件打包成一个文件,然后将其重命名为faceset.pak并替换(备份旧的)“ … \ _ internal \ pretrain_CelebA”文件夹中的文件。默认值为n(禁用)。但是,如果要节省一些时间,可以去论坛找别人训练好的模型。

Shared models: https://mrdeepfakes.com/forums/thread-df…d-requests

要使用共享的预训练模型,只需下载它,将所有文件直接放入模型文件夹中,开始训练,在选择要训练的模型(如果在模型文件夹中有更多内容)和用于训练的设备后2秒钟内按任意键 (GPU / CPU)来覆盖模型设置,并确保禁用预训练选项,以便您开始正确的训练;如果您启用了预训练选项,则模型将继续进行预训练。 请注意,该模型会将迭代计数恢复为0,这是预训练模型的正常行为。

  1. Merging合成:

训练完模型后,该将学习的人脸合并到原始帧上以形成最终视频了(转换)。

为此,我们有2个对应于2种可用型号的转换脚本:

7) merge SAEHD
7) merge Quick96

选择其中任何一个后,命令行窗口将出现,并带有多个提示。
第一个将询问您是否要使用带交互界面的转化器,默认值为y(启用),除非你受虐狂,不然就好好开着吧,边调参数边预览
Use interactive merger? ( y/n ) :

第二个将询问您要使用哪种模型:
Choose one of saved models, or enter a name to create a new model.
[r] : rename
[d] : delete
[0] : df192 – latest
:

第3个会问您要在合并(转换)过程中使用哪个GPU / GPU:
Choose one or several GPU idxs (separated by comma).
[CPU] : CPU
[0] : GeForce GTX 1070 8GB
[0] Which GPU indexes to choose? :
按Enter将使用默认值(0)。

完成之后,您将看到一个带有当前设置的命令行窗口以及一个预览窗口,其中显示了操作交互式转换器/合并程序所需的所有控件。

这是命令行窗口和转换器预览窗口的快速浏览:

Converter具有许多选项,可用于更改遮罩类型,大小,羽化/模糊,还可以添加其他颜色转移并进一步锐化/增强最终训练的脸部。

这是解释的所有合并/转换器功能的列表:

  1. Main overlay modes:
  • original: 显示原始画面而没有换脸
  • overlay: 简单地将学习到的脸覆盖在框架上 (推荐用这个,滚石注)
  • hist-match: 根据直方图叠加学习的面部和试图以使其匹配(具有2种模式:正常模式和可通过Z切换的蒙版)
  • seamless: 使用opencv泊松无缝克隆功能在原始帧的头部上方融合新学习的面部
  • seamless hist match: 结合了直方图匹配和无缝匹配。
  • raw-rgb: 覆盖原始学习过的脸部而没有任何遮罩

注意:无缝模式可能导致闪烁。

  1. Hist match threshold:在直方图匹配和无缝直方图覆盖模式下控制直方图匹配的强度。
    Q – 增加值
    A – 减小值
  2. Erode mask: 控制遮罩的大小。
    W – 增加遮罩腐蚀(较小的遮罩)
    S – 减少遮罩腐蚀(较大的遮罩)
  3. Blur mask: 使遮罩边缘模糊/羽化,以实现更平滑的过渡
    E – 增加值
    D – 减小值
  4. Motion blur: 动态模糊。输入初始参数(转换器模式,模型,GPU / CPU)后,合并将加载所有帧和data_dst对齐的数据,同时,它会计算用于创建此设置控制的运动模糊效果的运动矢量,让您 将其添加到人脸移动的地方,但是即使移动很小,高值也可能使人脸模糊。 该选项仅在“ data_dst / aligned”文件夹中存在一组面孔时才有效-如果在清理过程中某些面孔带有_1前缀(即使只有一个人的面孔),效果将不起作用,同样 如果有一个可以反射目标人员面部的镜子,在这种情况下,您将无法使用运动模糊,并且添加该模糊的唯一方法是分别训练每组面部。
    R – 增加motion blur
    F – 减少motion blur
  5. Super resolution: 超分辨率使用与data_src数据集/面部设置增强器类似的算法,它可以为牙齿,眼睛等区域添加更多定义,并增强所学面部的细节/纹理。
    T – 增加细节 the enhancement effect
    G – 减少细节
  6. Blur/sharpen: 使用方块或高斯方法模糊或锐化所学的面部。
    Y – sharpens the face
    H – blurs the face
    N – box/gaussian mode switch
  7. Face scale: 缩放人脸
    U – scales learned face down
    J – scales learned face up
  8. Mask modes: 6种遮罩计算方式,效果自己试一遍就知道了

dst: uses masks derived from the shape of the landmarks generated during data_dst faceset/dataset extraction.
learned-prd: uses masks learned during training. Keep shape of SRC faces.
learned-dst: uses masks learned during training. Keep shape of DST faces.
learned-prddst: combines both masks, smaller size of both. learned-prd dst: combines both masks, bigger size of both. XSeg-prd: uses XSeg model to mask using data from source faces. XSeg-dst: uses XSeg model to mask using data from destination faces. XSeg-prddst: combines both masks, smaller size of both.
learned-prddstXSeg-dst*prd: combines all 4 mask modes, smaller size of all.

  1. Color transfer modes: 与训练过程中的颜色转移类似,您可以使用此功能将学习到的脸部的肤色与原始帧更好地匹配,以实现更加无缝和逼真的脸部交换。 有8种不同的模式:
    RCT
    LCT
    MKL
    MKL-M
    IDT
    IDT-M
    SOT – M
    MIX-M
  2. Image degrade modes: 您可以使用3种设置来影响原始帧的外观(不影响换面):
    Denoise – denoises image making it slightly blurry (I – increases effect, K – decrease effect)
    Bicubic – blurs the image using bicubic method (O – increases effect, L – decrease effect)
    Color – decreases color bit depth (P – increases effect, ; – decrease effect)

附加控件::

TAB button – 在主预览窗口和帮助屏幕之间切换。
请记住,您只能在主预览窗口中更改参数,按帮助屏幕上的任何其他按钮都不会更改它们。
-/_ and =/ buttons are used to scale the preview window.
Use caps lock to change the increment from 1 to 10 (affects all numerical values).

要保存/覆盖当前一帧中所有下一帧的设置 shift /
要保存/覆盖当前一帧中所有先前帧的设置 shift M
要开始合并所有帧,请按 shift >
要返回第一帧,请按 shift < 要仅转换下一帧,请按 >
要返回上一帧,请按 <

  1. 把转化好的帧合成为视频

合并/转换所有面部之后,“ data_dst”文件夹中将有一个名为“ merged”的文件夹,其中包含构成视频的所有帧。
最后一步是将它们转换回视频,并与data_dst.mp4文件中的原始音轨合并。

为此,您将使用提供的4个.bat文件之一,这些文件将使用FFMPEG将所有帧组合成以下格式之一的视频-avi,mp4,lessless mp4或lossless mov:

  • 8) merged to avi
  • 8) merged to mov lossless 无损mov
  • 8) merged to mp4 lossless 无损MP4- 8) merged to mp4deepfacelab最新版本
    【原版英文2021-1120版】
    链接:https://pan.baidu.com/s/1Nxf3OaFLR7yDDjlN3TCxIw
    提取码:z8ef汉化版下载:链接:https://pan.baidu.com/share/init?surl=RIVUhEeEujhcr2E2U2bvWg提取码:6666
    【提取码:6666】

朋友们如觉得这篇文章不错,欢迎朋友们转发!

信融职业人产业联盟

沃唐卡与上海赫京企业管理有限公司旗下拥有众多产业及行业联盟,有兴趣的朋友们可以在我们的官网发掘更多有趣、更多有意思、更多有价值信息!

|“沃唐卡”全站导航|

|十二生肖守护小唐卡|——|最新唐卡价格行情走势|——|收藏级唐卡推荐|

|沃唐卡分仓索引|——|118画仓|——|138画仓|——|155画仓|——|158画仓|——|168画仓|——|188画仓|

|宠粉福利专区|——|沃唐卡合作画师作品|


www.WoTangKa.com-沃唐卡

www.WoTangKa.com-沃唐卡:国内最大的唐卡信息平台,一直致力于为朋友们提供最全面的唐卡信息检索服务及成熟完善的唐卡仓储供应链服务!

“沃唐卡”唐卡平台为朋友们提供:加盟“沃唐卡”唐卡销售中心、唐卡画师签约直供、唐卡艺术品投资、加盟“沃唐卡”唐卡供应链等服务

沃唐卡咨询热线:13661344269(同微信)

友情提醒:需要唐卡原图的朋友可以关注“沃唐卡”的微信公众号:“沃唐卡”或“wotangka”,直接留言唐卡编码以及您接收邮件的电子邮箱地址,沃唐卡客服小沃会在48小时内发送邮件给您!

相关文章